CYCLING INJURIES

Bike Fit + Rehab = Happy Cyclist

Jenny Kempf MPT, CSCS

Objectives

1. Epidemiology
2. Biomechanics
3. Overuse injuries
4. Prevention

Cycling Epidemiology

- 100 million Americans ride bicycles
 - 5 million cyclists ride 20 days per month
- Cycling injuries result in 500,000 Physician visits per year
- Estimated cost of 8 billion dollars

Epidemiology

- Overuse injuries most common, traumatic event second
 - Improper training
 - Improper bike fit
- Cycling is a repetitive activity
 - 1 hour = 5400 pedal revolutions
 - Can result in microtrauma or overuse injuries
 - Knee most common location or overuse injury

Injury Incidence

- Wilber et al used questionnaire
 - Neck 48.8%
 - Knee 41.7% (26-65%)
 - Groin/buttock 36.1%
 - Hands 31.1%
 - Back 30.3%

Injury Predictors

- Low weekly mileage - ≤ 26 miles/wk
- Duration in low gears
- Years of cycling experience
- Average speed ≤ 14 mph
Cycling Biomechanics

- Sagittal plane sport and a partially closed kinetic chain activity
- Joints go through restricted ranges of motion due to fixed buttock and foot positions
- Power is transferred from rider to bike via pedal-cleat system
- 2 Phases of the pedal cycle
 - Power
 - Recovery

Power Phase

- Starts just prior to top dead center (TDC) and finishes at bottom dead center (BDC)
- Propels bicycle forward
- Greatest muscular activity in this phase

Power Phase Forces

- Forces applied to pedal
 - Seated, half of body weight
 - Standing, 3x body weight
- Greatest F applied at middle half of power phase, F is perpendicular to pedal

Recovery Phase

- Starts just before BDC and finishes at TDC
- Realigns foot and leg for next power phase
- Negative recovery phase pedal F (wt of limb applies torque to crank)
Common Cycling Injuries

Knee Pain
1. Anterior
 • Patellofemoral pain x 2
 • Patellar tendonitis
2. Lateral
 • Iliotibial band syndrome
3. Posterior
 • Hamstring

Anterior Knee Pain

Patellofemoral Pain
“Retropatellar knee pain”

- Excessive compressive load between knee cap and femur
- Causes
 1. Muscular imbalances
 2. Improper pedaling
 3. Seat too low
 4. Seat too far forward
 5. Gravel too high
 6. Excessive hill riding
 7. Improper training

Treatment
Retro PFP

- Flexibility
 • Quad
 • Hip flexor
 • Hamstring
- Strength
 • Weight bearing co-contraction
 • Gluteals, hamstring, quadricep
- Education on pedaling mechanics
Patellofemoral Pain

“Medial knee pain”

- Excessive shear forces between knee cap and femur

- Causes
 1. Muscular imbalances
 2. Increase Q angle
 3. Foot/LE malalignment
 4. Seat too high
 5. Pedal width too wide
 6. Improper training

Treatment

Patellar PFP

- Strength
 - Non weight bearing to weight bearing
 - Gluteal, core, hamstrings
 - Knee control

- Foot mechanics
 - Orthotic to shoe or cleat

- Education on pedaling mechanics

Patellar Tendonitis

- Adverse line of pull on tendon

- Causes
 1. Muscular imbalances
 2. LE alignment
 3. Seat too low
 4. Seat too far forward
 5. Improper training

Treatment

Patellar tendonitis

- Strength
 - Non weight bearing to weight bearing
 - Gluteal, core, hamstrings
 - Knee control

- Foot mechanics
 - Orthotic to shoe or cleat
Lateral Knee Pain

- Excessive friction of distal IT band over knee (medial femoral condyle)
- Friction can be caused for many reasons
 - Muscular imbalances
 - LE leg length
 - Leg alignment
 - Foot placement on pedal
 - Seat too far back
 - Seat too high
 - Training error

Treatment

- IT band mobility
 - No stretch, foam roller massage
- Strength
 - Gluteals
 - Core
- Orthotics for leg length and alignment
- Pedaling mechanics – knee position

Iliotibial Band Syndrome

- Excessive friction of distal IT band over knee (medial femoral condyle)
- Friction can be caused for many reasons
 - Muscular imbalances
 - LE leg length
 - Leg alignment
 - Foot placement on pedal
 - Seat too far back
 - Seat too high
 - Training error

Treatment

- IT band mobility
 - No stretch, foam roller massage
- Strength
 - Gluteals
 - Core
- Orthotics for leg length and alignment
- Pedaling mechanics – knee position

Posterior Knee Pain

- Excessive load on tendon in lengthened or stretched position

Hamstring Strain

- Excessive load on tendon in lengthened or stretched position
- Friction can be caused for many reasons
 - Muscular imbalances
 - LE leg length
 - Leg alignment
 - Foot placement on pedal
 - Seat too far back
Treatment
Hamstring strain

- Strength
 - Eccentric hamstring strength – work hamstring in lengthened position
 - Improve glut strength and pedal mechanics
 - Core
- Flexibility
 - Hip flexors or pelvic position
 - Correct leg length, usually short side

Hip pain
“soft tissue impingement”

- Excessive compressile load to soft tissue in front of hip
- Causes
 1. Decreased glut and hamstring strength
 2. Poor hip or back mobility
 3. Aggressive tri position
 4. Poor riding technique

Treatment
Hip pain

- Hip joint and back mobilizations
 - Self mobs
 - Gluteal strengthening
 - Pedaling mechanics
Low Back Pain

- Causes
 1. Tight musculature
 2. Poor core strength
 3. Leg length discrepancy
 4. Seat too high
 5. Handle bar too low
 6. Seat too far back
 7. Unilateral riding

Treatment

- Low back pain

 - Flexibility
 - Hamstrings, hip flexors

 - Core strengthening
 - Gluts, abdominals, back extensors

Core Strengthening

- Plank positions
- Physioball exercises

Neck Pain

- Causes
 1. Excessive neck extension
 2. Poor thoracic spine mobility
 3. Seat too far back
 4. Handle bars too low

Treatment

- Thoracic spine mobility
- Strength
 - Shoulder blades
 - Neck – chin tucks

Prevention

- Good bike fit
- Appropriate training progression
- Multi-planar strength
- Mobility
Summary

• BIKE FIT!!!!

• Symmetrical bicycle, asymmetrical cyclist
 - Fix asymmetries through rehab or prevention
 - Rehabilitation and Direct Access Physical Therapy – 263-4765

Summary

• Repetitive stress
 - Training progression with solid base
 - Move in multiple planes to prevent breakdown

• Fixed foot and fixed buttock
 - Higher stress to knee

Thank You

References

• When the Foot Hits the Ground Notes.